
Paired Watershed
The Hinkle Creek Paired Watershed Study was initiated to carry out two overarching goals: to investigate the environmental impact of contemporary forest practices on non-fish-bearing streams and downstream in tributary and main stem fish-bearing streams. This presentation serves as a summary of some of the results for the studies in Hinkle Creek. Statistically significant increases in water yield, summer low flows, peak flows, and storm flows were detected as a consequence of timber harvest and the subsequent silvicultural activities. Statistically significant increases in sediment yield were also detected. The increases in sediment yield were not consistent with the literature; however they were highly correlated with the observed increases in water yield. Statistically significant increases and decreases were detected in maximum and minimum daily stream temperatures in the non-fish-bearing tributaries, fish-bearing tributaries, and the main stem as a consequence of the two harvest entries. Statistically significant increases in nitrogen were detected as a consequence of the timber harvest and the subsequent silvicultural activities. Nitrogen was the only nutrient that responded to the silvicultural activities. In Hinkle Creek the pacific giant salamander was the only amphibian that was abundant enough to study. In the two years after the first harvest entry, the data did not support the hypothesis that there was any change in the abundance of salamanders.
The paired catchment approach has been the predominant method for detecting the effects of disturbance on catchment-scale hydrology. Notwithstanding, the utility of this approach is limited by regression model sample size, variability between paired catchments, type II error, and the inability of locating a long-term suitable control. An increasingly common practice is to use rainfall-runoff models to discern the effect of disturbance on hydrology, but few hydrologic model studies (1) consider problems associated with model identification, (2) use formal statistical methods to evaluate the significance of hydrologic change relative to variations in rainfall and streamflow, and (3) apply change detection models to undisturbed catchments to test the approach. We present an alternative method to the paired catchment approach and improve on stand-alone hydrologic modeling to discern the effects of forest harvesting at the catchment scale. Our method combines rainfall-runoff modeling to account for natural fluctuations in daily streamflow, uncertainty analyses using the generalized likelihood uncertainty estimation method to identify and separate hydrologic model uncertainty from unexplained variation, and GLS regression change detection models to provide a formal experimental framework for detecting changes in daily streamflow relative to variations in daily hydrologic and climatic data.
Nutrients are one of the factors which limit primary production and can be a water pollutant. Fertilizer can be applied to increase the Nitrogen and therefore increase the growth. The Hinkle Creek Paired Watershed Study addresses concerns about the loss of essential plant nutrients in Douglas-fir plantations and assesses the impacts of forest management on stream water chemistry of fish-bearing streams. The objective is to determine the cumulative impacts to fish-bearing streams of non-fish-bearing streams which are not afforded the protection of un-harvested and unfertilized riparian strips and to compare those impacts with the local impacts of different treatments.
We investigated the effect of contemporary forest harvesting practices on warm-season thermal regimes of headwater streams using a Before-After-Control-Intervention (BACI) design within a nested, paired watershed study. We applied harvesting treatments to four headwater tributaries of Hinkle Creek, designed in accordance with the Oregon Forest Practices Act. Therefore, fixed-width buffer strips containing overstory merchantable trees were not left adjacent to the four non-fish-bearing streams. The summer following harvesting, we observed a variable temperature response across the four harvested streams. Mean maximum daily stream temperatures ranged from 1.5 C cooler to 1.0 C warmer relative to pre-harvest years. We also observed significantly lower minimum and mean daily stream temperatures, and recorded particularly low temperatures in treatment streams on days that minimum stream temperatures in reference streams were high. At the watershed scale, we did not observe cumulative stream temperature effects related to harvesting 14% of the watershed area in multiple, spatially-distributed harvest units across four headwater catchments. At the watershed outlet, we observed no change to maximum, mean, or minimum daily stream temperatures. We attribute the lack of consistent temperature increases in headwater streams to shading provided by a layer of logging slash that deposited over the streams during harvesting, and to increased summer baseflows.
