
Oregon
Little is known on the importance of riparian areas to birds near small headwater streams in mesic forests. Progress towards understanding limiting factors that affect bird populations has been difficult because of lack of information beyond the breeding period. I compared bird assemblages between headwater riparian and upland areas throughout the post-breeding period by capturing birds using mist-nets in six paired riparian and upland locations along six headwater streams of the Trask River in northwestern Oregon. In order to assess whether birds prefer headwater riparian areas, I also examined factors affecting habitat selection by juvenile Swainson's thrushes (n=37) using radio telemetry. While riparian and upland locations had similar coarse wood volume and fruiting and tall (> 1.3 m tall) shrub cover, riparian locations had less shrub cover (< 1.3 m tall) and different shrub composition than upland locations. Total capture rate was double that of upland in riparian locations, while bird species richness was similar. Similar numbers of birds were captured in mist-nets oriented perpendicular and parallel to the stream suggesting that birds were not using riparian areas as movement corridors. Adult capture rate was greater in riparian locations than adjacent uplands while results of juvenile capture rates were ambiguous. Riparian locations supported higher capture rates of Swainson's thrushes and winter wrens than adjacent uplands.
At the Sediment Symposium, researchers review and summarize our overall understanding of current scientific knowledge of in-stream sediment. The video archive of the presentations is available.
To view the presentations, please visit this website: http://oregonstate.edu/conferences/event/2013sedimentsummit/videoarchive...
In the Pacific Northwest ecoregion of North America, sculpins represent a major constituent of freshwater assemblages in coastal rivers. Little is known of their interactions with co-occurring species, such as widely studied salmon and trout (salmonines). In this study, I evaluated inter- and intraspecific interactions involving cottids (Cottus sp.) and coastal cutthroat trout (Oncorhynchus clarkii clarkii). I used a response surface experimental design to independently evaluate effects of cutthroat trout and sculpin biomass on growth and behavior. There was evidence of both intra- and interspecific interactions between cutthroat trout and sculpins, but the interactions were asymmetrical with biomass of cutthroat trout driving both intra- and interspecific interactions, whereas sculpins had little influence overall. Cutthroat trout biomass was positively related to conspecific aggressive interactions and negatively related to growth. Sculpin exhibited increased use of cover during the day in response to greater biomass of cutthroat trout, but not sculpin biomass. Nocturnal use of cover by sculpins was unaffected by biomass of either species. This experiment provides insights into the species interactions and the mechanisms that may allow sculpins and salmonines to coexist in nature. As cutthroat trout appear to be superior competitors, coexistence between sculpins and cutthroat trout may depend on some form of refuge.
Coastal cutthroat trout (Oncorhynchus clarkii clarkii) and cottids (Cottus spp) commonly co-occur in headwater streams in western Oregon. Little is known about the comparative trophic ecology of these species or how they respond to seasonal scarcity of resources. In this study I evaluated the seasonal variability in diets and consumption as it related to food limitation for coastal cutthroat trout and cottids. Over 340 individual diets were quantified from seasonal samples collected in May, July and September of 2008. Diet overlap was relatively low among seasons and species. Coastal cutthroat trout exhibited a more diverse diet in terms of taxonomic richness of prey and consumed both aquatic and terrestrially-derived prey, whereas cottids appeared to specialize on aquatic prey. Based on diet composition and amount consumed, all species appeared to be increasingly food limited from July to September, relative to May. However when diet composition was integrated with a bioenergetic model, coastal cutthroat trout were found to be substantially more food limited than cottids. Differences in the cost of activity between these species may explain this result. Activity costs may be higher for trout, which reside in the water column and rely on active swimming, versus cottids, which lack a swim bladder and are more benthic oriented. Results of this work suggest that cottids are dietary specialists, feeding almost exclusively on benthic prey.
We investigated the effect of contemporary forest harvesting practices on warm-season thermal regimes of headwater streams using a Before-After-Control-Intervention (BACI) design within a nested, paired watershed study. We applied harvesting treatments to four headwater tributaries of Hinkle Creek, designed in accordance with the Oregon Forest Practices Act. Therefore, fixed-width buffer strips containing overstory merchantable trees were not left adjacent to the four non-fish-bearing streams. The summer following harvesting, we observed a variable temperature response across the four harvested streams. Mean maximum daily stream temperatures ranged from 1.5 C cooler to 1.0 C warmer relative to pre-harvest years. We also observed significantly lower minimum and mean daily stream temperatures, and recorded particularly low temperatures in treatment streams on days that minimum stream temperatures in reference streams were high. At the watershed scale, we did not observe cumulative stream temperature effects related to harvesting 14% of the watershed area in multiple, spatially-distributed harvest units across four headwater catchments. At the watershed outlet, we observed no change to maximum, mean, or minimum daily stream temperatures. We attribute the lack of consistent temperature increases in headwater streams to shading provided by a layer of logging slash that deposited over the streams during harvesting, and to increased summer baseflows.
