OREGON STATE UNIVERSITY

herbicides

Potential Risks to Freshwater Aquatic Organisms Following a Silvicultural Application of Herbicides in Oregon's Coast Range
Jeff Louch, Vickie Tatum, Ginny Allen, V. Cody Hale, Jeffrey McDonnell, Robert J. Danehy, George Ice
Mar-28-2016

Glyphosate, aminomethylphosphonic acid (AMPA), imazapyr, sulfometuron methyl (SMM), and metsulfuron methyl (MSM) were measured in streamwater collected during and after a routine application of herbicides to a forestry site in Oregon’s Coast Range. Samples were collected at three stations: HIGH at the fish/no-fish interface in the middle of the harvest/spray unit; MID at the bottom of the unit; and LOW downstream of the unit. All herbicides were applied by helicopter in a single tank mix. AMPA, imazapyr, SMM, and MSM were not detected (ND) in any sample at 15, 600, 500, and 1000 ng/L, respectively. A pulse of glyphosate peaking at ≈62 ng/L manifested at HIGH during the application. Glyphosate pulses peaking at 115 ng/L (MID) and 42 ng/L (HIGH) were found during the first two post-application storm events 8 and 10 days after treatment (DAT), respectively: glyphosate was <20 ng/L (ND) at all stations during all subsequent storm events. All glyphosate pulses were short-lived (4 to 12 h). Glyphosate in baseflow was ≈25 ng/L at all stations 3 DAT and was still ≈25 ng/L at HIGH, but ND at the other stations, 8 DAT: subsequently, glyphosate was ND in baseflow at all stations. These results show that aquatic organisms were subjected to multiple short-duration, low-concentration glyphosate pulses corresponding to a cumulative time-weighted average (TWA) exposure of 6634 ng/L*h. Comparisons to TWA exposures associated with a range of toxicological endpoints for sensitive aquatic organisms suggests a margin of safety exceeding 100 at the experimental site, with the only potential exception resulting from the ability of fish to detect glyphosate via olfaction. For imazapyr, SMM, and MSM the NDs were at concentrations low enough to rule out effects on all organisms other than aquatic plants, and the low concentration and (assumed) pulsed nature of any exposure should mitigate this potential.

DISCIPLINE: Hydrology & Water Quality    STUDY: Alsea    TYPE: Journal Articles    TAGS: forestry, Glyphosate, herbicides, pulsed exposure, time-weighted average exposure
Herbicides in Needle Branch Streamwater
Louch, J., G. Allen, G. Ice, T. Garland, V. C. Hale, and J. McDonnell
Apr-18-2013

Glyphosate, aminomethylphosphonic acid (AMPA), imazapyr, sulfometuron methyl, and metsulfuron methyl were measured in Needle Branch streamwater during and after application of herbicide(s). All herbicides were applied by helicopter in a single tank mix. Samples were collected at three sites: NBH (at the fish/no-fish interface in the middle of the harvest unit), NBU (at the bottom of the harvest unit), and NBL (well downstream). AMPA, imazapyr, sulfometuron methyl and metsulfuron methyl were not detected in any sample at 15 ng/L, 0.6 μg/L, 0.5 μg/L and 1 μg/L, respectively. However, a clear pulse of dissolved glyphosate manifested at NBH during the application (baseflow conditions).  Subsequent baseflow samples collected three days after treatment (DAT) showed ≈25 ng/L dissolved glyphosate at all three sites. Samples collected during the first storm event (8 DAT) showed a clear pulse of dissolved glyphosate at NBU, but not at NBH or NBL. The maximum concentration observed during this pulse at NBU was 115 ng/L, and the pulse persisted for about six hours. During the next storm event (10 DAT) a clear pulse of dissolved glyphosate manifested at NBH, but not at NBU or NBL. The maximum co centration observed was 42 ng/L, and this pulse persisted for about ten hours. Results from all subsequent storm events showed dissolved glyphosate at <20 ng/L in all samples. A limited number of analyses on suspended sediment (SS) showed that SS held de minimis masses of glyphosate and AMPA.

DISCIPLINE: Hydrology & Water Quality    STUDY: Alsea    TYPE: Presentations    TAGS: Glyphosate, herbicides, aerial application
Subscribe to herbicides