
habitat
Little is known on the importance of riparian areas to birds near small headwater streams in mesic forests. Progress towards understanding limiting factors that affect bird populations has been difficult because of lack of information beyond the breeding period. I compared bird assemblages between headwater riparian and upland areas throughout the post-breeding period by capturing birds using mist-nets in six paired riparian and upland locations along six headwater streams of the Trask River in northwestern Oregon. In order to assess whether birds prefer headwater riparian areas, I also examined factors affecting habitat selection by juvenile Swainson's thrushes (n=37) using radio telemetry. While riparian and upland locations had similar coarse wood volume and fruiting and tall (> 1.3 m tall) shrub cover, riparian locations had less shrub cover (< 1.3 m tall) and different shrub composition than upland locations. Total capture rate was double that of upland in riparian locations, while bird species richness was similar. Similar numbers of birds were captured in mist-nets oriented perpendicular and parallel to the stream suggesting that birds were not using riparian areas as movement corridors. Adult capture rate was greater in riparian locations than adjacent uplands while results of juvenile capture rates were ambiguous. Riparian locations supported higher capture rates of Swainson's thrushes and winter wrens than adjacent uplands.
Coastal cutthroat trout Oncorhynchus clarkii clarkii are the most widely distributed native salmonid in the forested watersheds of western Oregon. The initial Alsea Watershed Study demonstrated negative impacts on the abundance of cutthroat trout due to logging practices of the day. Here we report on abundance, size, growth, and condition of coastal cutthroat trout before and after logging under the current forest management practice regulations using a before, after, control, impact (BACI) study design with Flynn Creek and Needle Branch as the control and impact streams respectively. Relative abundance estimates are from a census of pool habitats using single-pass electrofishing and relative growth is from the recapture of individuals implanted with passive integrated transponder tags. A significant increase in age 1+ cutthroat trout biomass and abundance was observed post-harvest in Needle Branch relative to Flynn Creek (p=0.04 and 0.01 respectively). There was also a significant shift in the spatial distribution of cutthroat biomass in Needle Branch (p=0.04) in an upstream direction post-treatment suggesting that increases in cutthroat trout were spatially linked to the location of the harvest unit. There was no evidence for a treatment effect on mean fork length or the 90th percentile of fork length for age 1+ cutthroat trout (p=0.32 and 0.24 respectively). This result was supported by an absence of evidence for a treatment effect on relative growth rate.
