OREGON STATE UNIVERSITY

Hinkle Creek

Experimental Analysis of Intra- and Interspecific Competitive Interactions between Cutthroat Trout and Sculpins in Small Streams
Ramirez, B.S.
Dec-02-2011

In the Pacific Northwest ecoregion of North America, sculpins represent a major constituent of freshwater assemblages in coastal rivers. Little is known of their interactions with co-occurring species, such as widely studied salmon and trout (salmonines). In this study, I evaluated inter- and intraspecific interactions involving cottids (Cottus sp.) and coastal cutthroat trout (Oncorhynchus clarkii clarkii). I used a response surface experimental design to independently evaluate effects of cutthroat trout and sculpin biomass on growth and behavior. There was evidence of both intra- and interspecific interactions between cutthroat trout and sculpins, but the interactions were asymmetrical with biomass of cutthroat trout driving both intra- and interspecific interactions, whereas sculpins had little influence overall. Cutthroat trout biomass was positively related to conspecific aggressive interactions and negatively related to growth. Sculpin exhibited increased use of cover during the day in response to greater biomass of cutthroat trout, but not sculpin biomass. Nocturnal use of cover by sculpins was unaffected by biomass of either species.  This experiment provides insights into the species interactions and the mechanisms that may allow sculpins and salmonines to coexist in nature. As cutthroat trout appear to be superior competitors, coexistence between sculpins and cutthroat trout may depend on some form of refuge.

DISCIPLINE: Fisheries    STUDY: Alsea, Hinkle Creek, Trask    TYPE: Theses    TAGS: sculpins, intraspecific interactions, cottus, Oncorhynchus, coastal cutthroat trout, biomass, Oregon, competition
The Influence of Contemporary Forest Management on Stream Nutrient Concentrations in an Industrialized Forest in the Oregon Cascades
Meininger, W.S., K. Cromack, and A. Skaugset
Apr-18-2013

Fertilizer was applied in 2004 and the response of the nutrient levels in the water was measured. Stream water samples were analyzed for nitrogen, phosphorus, calcium, sodium, potassium, magnesium, sulfate, chloride, and silicon as well as specific conductance, pH, and alkalinity. All treatment watersheds showed a statistically significant increase in NO3 + NO2 concentrations after clearcutting (p < 0.001). The slope of the streambed through the disturbance was a stronger predictor of the magnitude of the response than was the magnitude of disturbance. Ammonia and organic nitrogen displayed notable increases after harvest treatment, but these increases were attributed to increases in the control watersheds. Phosphorus showed a response to timber harvest in one headwater stream. The remaining nutrients showed a small decrease in the control and treatment watersheds for the period after harvest. The storm response results showed that NO3 + NO2 concentrations in stream water increase with discharge during small storms that occur after periods of negligible precipitation.

DISCIPLINE: Hydrology & Water Quality    STUDY: Hinkle Creek    TYPE: Presentations    TAGS: timber harvest, Nitrate Response, topography, clearcut
Local and Downstream Impacts of Contemporary Forest Practices on Sediment Yield
Skaugset A., N. Zègre, A. Simmons, and H. Owens
Apr-18-2013

The hydrological impacts of forest management remains a primary concern to resources managers yet much of our understanding about these effects comes from historic paired watershed studies conducted up to four decades ago. While these early studies play a critical role in the development of current best management practices and forest harvesting practices, results do not necessarily reflect the effects of modern forest harvesting. In this presentation we show results of a study conducted at the decade-long Hinkle Creek Paired Watershed Study that examines the local and downstream impacts of forest harvesting on streamflow. Streamflow was measured at the outlet of six (4 treatment|2 reference) headwater catchments and two (1 treatment|1 reference) 3rd –order watersheds. Regression-based change detection models were developed between reference and treated catchments using mean monthly streamflow, instantaneous maximum peak flow, and storm quick flow. Contemporary forest harvesting practices, defined by the Oregon Forest Practice Rule, were used to clear-cut harvest trees in four experimental headwater catchments, while reference catchments remained untouched. Forest harvesting treatments were initiated in the experimental headwater catchments in 2005 (1st entry) removing trees from 13% to 65% of catchment area following a fifteen to eighteen month calibration period.

DISCIPLINE: Hydrology & Water Quality    STUDY: Hinkle Creek    TYPE: Presentations    TAGS: sediment yield, contemporary forest practices, Discharge
Processes That Influence the Downstream Propagation of Heat in Streams from Clearcut Harvest Units: Hinkle Creek Paired Watershed Study
Otis, T. L.
Nov-27-2007

This research investigates the direct and downstream impacts of clearcut harvest units on stream temperature as a part of the Hinkle Creek Paired Watershed Study. The experimental design for the study was a Before-After-Control-Impact (BACI) design. Maximum daily stream temperatures (MDST) were analyzed for the four treatment streams for one year before and one year after harvest. The impact of timber harvest on MDST is small when compared to the spatial (between-stream) variation in MDST and this impact decreased downstream. At 300 meters, nominally, downstream of the harvest units the impact of timber harvest on MDST was not statistically significant for two streams and only moderately statistically significant for the other two streams. Stream velocity, discharge, and groundwater advection in the streams downstream of the harvest units were quantified using dye tracer dilution techniques. The One-dimensional Transport with Inflow and Storage (OTIS) model was used to quantify longitudinal dispersions, transient storage volumes, storage transfer rates, and hyporheic residence times in four 75 meter reaches in each of the four treatment streams. Latent heat, Sensible heat, Longwave Radiant heat and Photosynthetically Active Radiation (PAR) were calculated for August 7-17, 2006 at the center of the 300 meter study reach in Russell Creek.

DISCIPLINE: Hydrology & Water Quality    STUDY: Hinkle Creek    TYPE: Theses    TAGS:
Persistence of Spatial Distribution Patterns of Coastal Cutthroat Trout in a Cascade Mountain Stream
Novick, M. S.
Dec-02-2005

Previous research in South Fork Hinkle Creek suggested that coastal cutthroat trout exhibit an aggregated spatial pattern across multiple spatial scales. To evaluate the persistence of the observed abundance patterns and identify factors that affect those patterns, half-duplex passive integrated transponders (PIT-tags) were implanted in 320 coastal cutthroat trout (> 100 mm, about age 1-plus fish) within our study sections, and in an additional 370 fish throughout the watershed. Nineteen habitat patches of high, or low relative fish abundance were delineated and monitored over a 13-month period. Seasonal habitat surveys quantified channel characteristics in each patch. Immigration and emigration were monitored using stationary and portable PIT-tag antennas along 2 km of stream, including mainstem and tributary habitats. In general, habitat patches that supported a high abundance of coastal cutthroat trout experienced less immigration and more consistent fish abundance. Mainstem study sections maintained the initial relative abundance patterns, but abundances in the tributary sections shifted during the study period. Abundances of PIT-tagged coastal cutthroat trout were consistent over time in mainstem habitats, even though some originally marked fish moved away. In tributary sections relative abundances were much more variable and few originally marked fish remained.

DISCIPLINE: Fisheries    STUDY: Hinkle Creek    TYPE: Theses    TAGS:
The Influence of Contemporary Forest Management on Stream Nutrient Concentrations in an Industrialized Forest in the Oregon Cascades
Meininger, W. S.
Dec-19-2011

The increased demand for wood and fiber from a continually shrinking land base has resulted in the use of intensively managed forest plantations. Because much of the water flowing in rivers in the U.S. originates as precipitation in forests, there is a justified concern about the impacts of forest management on water quality. Nutrient concentrations were measured in eight streams from October 2002 to September 2011 to assess nutrient response to contemporary forest practices at the Hinkle Creek Paired Watershed Study in the Oregon Cascades. This period of time included a two-year pre-treatment calibration between control and treatment watersheds, a fertilization treatment of both basins in October 2004, and a post-treatment period from 2005 to 2011. Stream water samples were analyzed for nitrogen, phosphorus, calcium, sodium, potassium, magnesium, sulfate, chloride, and silicon as well as specific conductance, pH, and alkalinity. All treatment watersheds showed a statistically significant increase in NO3 + NO2 concentrations after clearcutting (p < 0.001). The slope of the streambed through the disturbance was a stronger predictor of the magnitude of the response than was the magnitude of disturbance. Concentrations of NO3 + NO2 observed during the calibration period were similar to concentrations observed in an old-growth forest in the H.J. Andrews, suggesting that nutrient processing within the Hinkle Creek watershed had returned to levels that existed prior.

DISCIPLINE: Hydrology & Water Quality    STUDY: Hinkle Creek    TYPE: Theses    TAGS: Nutrient concentrations, contemporary forest practices, clearcutting, fertilization treatment
Using in situ Turbidity to Estimate Sediment Loads in Forested Headwater Streams: A Top-down versus Bottom-up Approach
Meadows, M. W.
Apr-09-2009

Suspended sediment and in situ turbidity data from two western Oregon streams, Oak Creek and South Fork Hinkle Creek, were used to estimate annual sediment loads for the 2006 water year (October 1, 2005 to September 30, 2006). Water samples and in situ turbidity observations were taken following the Turbidity Threshold Sampling (TTS) protocol. The annual hydrographs for Oak Creek and South Fork Hinkle Creek were divided into storms which resulted in storm-specific relationships between in situ turbidity and Suspended Sediment Concentration (SSC). In the relationship between SSC and in situ turbidity, especially for Oak Creek, there are counterintuitive value which had to be vetted out with values of laboratory turbidity, hydrograph characteristics, and hysteresis loops. Observations of in situ turbidity considered erroneous were adjusted manually with the TTS-adjuster program. The objectives of this study were to determine the efficacy of an automated turbidity adjustment program compared with a manual turbidity adjuster, and to determine the efficacy of two in situ turbidity and SSC relationships to predict annual sediment loads. Relationships between SSC and in situ turbidity were made to estimate annual sediment load for Oak and South Fork Hinkle Creeks. The SSC vs. in situ turbidity relationships were made for storm-specific time periods and for the whole water year.

DISCIPLINE: Hydrology & Water Quality    STUDY: Hinkle Creek    TYPE: Theses    TAGS: Suspended sediment, Suspended Sediment Concentration, Turbidity, in situ turbidity, sediment load
Short-term Relationship of Timber Management and Pacific Giant Salamander Populations, and the Response of Larval Stream Amphibian to Predators Under Different Sediment Levels
Leuthold, N.
Mar-02-2010

In the Pacific Northwest, multiple studies have found negative effects of timber harvest on stream amphibians, but the results have been highly variable and region-specific. Over the last 30 years forest management practices have changed substantially, yet little work examines how modern forest management relates to the abundance or density of stream amphibians. I examined the influences of contemporary forest practices on Pacific giant salamanders as part of the Hinkle Creek paired watershed study. Density was positively associated with substrate, negatively associate with upstream area drained, and had a weak positive association with fish density, but I found no evidence of an effect of harvest. Pacific Northwest stream amphibians are often negatively associated with sedimentation, but the mechanism underlying this relationship is not clear. I found amphibian larvae were more visible as sediment level increased and some evidence that larvae were less visible in the presence of fish. These patterns are consistent with the hypothesis that sediment affects larval stream amphibians by increasing vulnerability to predation.

DISCIPLINE: Amphibians    STUDY: Alsea, Hinkle Creek, Trask    TYPE: Theses    TAGS: timber harvest, stream amphibians, Pacific giant salamanders, mark-recapture analysis, predation, Larva
The Influence of Contemporary Forest Harvesting on Summer Stream Temperatures in Headwater Streams of Hinkle Creek, Oregon
Kibler, K. M.
Jun-28-2007

Stream temperature is a water quality parameter that directly influences the quality of aquatic habitat, particularly for cold-water species such as Pacific salmonids. RMAs that contain overstory merchantable conifers are not required for small non-fish-bearing streams in Oregon, thus there is potential for increases in stream temperature to occur in headwater streams and concern that increases in stream temperatures and changes to onsite processes in these streams may propagate downstream and impair habitat in fish-bearing streams. The objectives of this work are to assess the effects of contemporary forest management practices on stream temperatures of small non-fish-bearing headwater streams and to develop new knowledge regarding the physical processes that control reach-level stream temperature patterns. Summer stream temperatures were measured for five years in six headwater streams in the Hinkle Creek basin in southern Oregon. After four years, four of the streams were harvested and vegetated RMAs were not left between the streams and harvest units. The watersheds of the two remaining streams were not disturbed. Post-harvest stream temperatures were monitored for one year in all six streams. Each harvested stream was paired with one unharvested stream and regression relationships for maximum, minimum and mean daily stream temperatures were developed.

DISCIPLINE: Hydrology & Water Quality    STUDY: Hinkle Creek    TYPE: Theses    TAGS: Stream temperature, forest harvesting, Riparian Management Areas (RMAs), Headwater streams, Canopy closure, logging slash
Baseline Stream Chemistry and Soil Resources for the Hinkle Creek Research and Demonstration Area Project
George, R. L.
Jun-12-2006

This research addressed the opportunity to obtain baseline data for both stream chemistry and soil resources for an intensively managed forest watershed, encompassed by the North and South Forks of Hinkle Creek Watershed Research and Demonstration Area Project near Sutherlin, Oregon. A solid representative database for both stream and soil nutrients in these forest watersheds will provide a model upon which to help gauge the effects of current and expected intensive forest management practices on industrial forest land. Eight original sampling points were described for water chemistry. Newly published soil surveys from the National Resource Conservation Service and Douglas County SCS were used to set up a methodology for sampling the representative Hinkle Creek soil resources. Eight main soil types were mapped, 27 representative soil pits were dug in accordance with the location of the mapped soils, and standard soil survey descriptions were created. Soil cores were taken from different depths (0-15, 15-30 and 30-60 cm). These data were used to estimate total soil C, N, P, and S resources, soil cation exchange capacity, and available base cations (Ca, Mg, K, and Na).

DISCIPLINE: Hydrology & Water Quality    STUDY: Hinkle Creek    TYPE: Theses    TAGS:

Pages

Subscribe to Hinkle Creek