land use

The Idiosyncrasies of Streams: Local Variability Mitigates Vulnerability of Trout to Changing Conditions
Andrea Watts

The scientists found that local variability in stream habitat, such as water depth and instream cover, play a greater role in reducing the effects of timber harvest and climate change on trout than previously realized. Instream cover and shade improve trout survival by providing a place to hide from predators.

DISCIPLINE: Fisheries, Hydrology & Water Quality    STUDY: Trask    TYPE: Reports    TAGS: land use, climate change, trout
Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change
Brooke E. Penaluna, Jason B. Dunham, Steve F. Railsback, Ivan Arismendi, Sherri L. Johnson, Robert E. Bilby, Mohammad Safeeq, Arne E. Skaugset

Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007– 2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions
among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.

DISCIPLINE: Fisheries    STUDY: Trask    TYPE: Journal Articles    TAGS: trout, land use, climate change
In Lieu of the Paired Catchment Approach: Hydrologic Model Change Detection at the Catchment Scale
Zégre, N., A.E. Skaugset, N.A. Som, J.J. McDonnell, L.M. Ganio

The paired catchment approach has been the predominant method for detecting the effects of disturbance on catchment-scale hydrology. Notwithstanding, the utility of this approach is limited by regression model sample size, variability between paired catchments, type II error, and the inability of locating a long-term suitable control. An increasingly common practice is to use rainfall-runoff models to discern the effect of disturbance on hydrology, but few hydrologic model studies (1) consider problems associated with model identification, (2) use formal statistical methods to evaluate the significance of hydrologic change relative to variations in rainfall and streamflow, and (3) apply change detection models to undisturbed catchments to test the approach. We present an alternative method to the paired catchment approach and improve on stand-alone hydrologic modeling to discern the effects of forest harvesting at the catchment scale. Our method combines rainfall-runoff modeling to account for natural fluctuations in daily streamflow, uncertainty analyses using the generalized likelihood uncertainty estimation method to identify and separate hydrologic model uncertainty from unexplained variation, and GLS regression change detection models to provide a formal experimental framework for detecting changes in daily streamflow relative to variations in daily hydrologic and climatic data.

DISCIPLINE: Hydrology & Water Quality    STUDY: Hinkle Creek    TYPE: Journal Articles    TAGS: change detection, hydrologic modeling, forest harvest, time series, uncertainty analysis, land use, Forest Hydrology, Paired Watershed
Subscribe to land use