Effect of bedrock permeability on stream base flow mean transit time scaling relations: 1. A multiscale catchment intercomparison

V. Cody Hale, Jeffery J McDonnell

The effect of bedrock permeability and underlying catchment boundaries on stream base flow mean transit time (MTT) and MTT scaling relationships in headwater catchments is poorly understood. Here we examine the effect of bedrock permeability on MTT and MTT scaling relations by comparing 15 nested research catchments in western Oregon; half within the HJ Andrews Experimental Forest and half at the site of the Alsea Watershed Study. The two sites share remarkably similar vegetation, topography, and climate and differ only in bedrock permeability (one poorly permeable volcanic rock and the other more permeable sandstone). We found longer MTTs in the catchments with more permeable fractured and weathered sandstone
bedrock than in the catchments with tight, volcanic bedrock (on average, 6.2 versus 1.8 years, respectively). At the permeable bedrock site, 67% of the variance in MTT across catchments scales was explained by drainage area, with no significant correlation to topographic characteristics. The poorly permeable site had opposite scaling relations, where MTT showed no correlation to drainage area but the ratio of median flow path length to median flow path gradient explained 91% of the variance in MTT across seven catchment scales. Despite these differences, hydrometric analyses, including flow duration and recession analysis, and storm response analysis, show that the two sites share relatively indistinguishable hydrodynamic behavior. These results show that similar catchment forms and hydrologic regimes hide different subsurface routing, storage, and scaling behavior—a major issue if only hydrometric data are used to define hydrological similarity for assessing land use or climate change response.